首页 » 知识 » 五年级奥数题100道及答案

五年级奥数题100道及答案

东方说体育 2年前 (2022-12-31) 知识 132 views 0

扫一扫用手机浏览

文章目录 [+]

20道简单的五年级奥数题及答案

有奖励

20道简单的五年级奥数题及答案

急急急!!!

我来答有奖励

138******49

LV.1

聊聊关注成为第1位粉丝

1.有一些糖,每人分5块多10块;如果现有的人数增加到原人数的1.5倍,那么每人4块就少2块.问这些糖共有多少块?

【分析与解】 方法一:设开始共有x人,两种分法的糖总数不变,有5x+10=4×1.5x-2,解得x=12,所以这些糖共有12×5+10=70块.

方法二:人数增加1.5倍后,每人分4块,相当于原来的人数,每人分1.5×4=6块.

有这些糖,每人分5块多10块,每人分6块少2块,所以开始总人数为(10+2)÷(6-5)=12人,那么共有糖12×5+10=70块.

2.甲、乙两个小朋友各有一袋糖,每袋糖不到20粒.如果甲给乙一定数量的糖后,甲的糖就是乙的糖粒数的2倍;如果乙给甲同样数量的糖后,甲的糖就是乙的糖粒数的3倍.那么,甲、乙两个小朋友共有糖多少粒?

【分析与解】 由题意知糖的总数应该是3的倍数,还是4的倍数.即为12的倍数,因为两袋糖每袋都不超过20粒,所以总数不超过40粒.于是糖的总数只可能为12、24或36粒.

如果糖的总数为12的奇数倍,那么“乙给甲同样数量的糖后”,甲的糖为12÷(3+1)×3=9的奇数倍.那么在甲给乙两倍“同样的数量糖”后,甲的糖为12÷(2+1)×2=8的奇数倍.

也就是说一个奇数加上一个偶数等于偶数,显然不可能.所以糖的总数不能为12的奇数倍.

那么甲、乙两个小朋友共有的糖只能为12的偶数倍,即为24粒.

3.甲班有42名学生,乙班有48名学生.已知在某次数学考试中按百分制评卷,评卷结果各班的数学总成绩相同,各班的平均成绩都是整数,并且平均成绩都高于80分.那么甲班的平均成绩比乙班高多少分?

【分析与解】 方法一:因为每班的平均成绩都是整数,且两班的总成绩相等,所以总成绩既是42的倍数,又是48的倍数,所以为[42,48]=336的倍数.

因为乙班的平均成绩高于80分,所以总成绩应高于48×80=3840分.

又因为是按百分制评卷,所以甲班的平均成绩不会超过100分,那么总成绩应不高于42×100=4200分.

在3840~4200之间且是336的倍数的数只有4032.所以两个班的总分均为4032分.

那么甲班的平均分为4032÷42=96分,乙班的平均分为4032÷48=84分.

所以甲班的平均分比乙班的平均分高96-84=12分.

方法二:甲班平均分×42=乙班平均分×48,即甲班平均分×7=乙班平均分×8,因为7、8互质,所以甲班的平均分为某数的8倍,乙班的平均分为某数的7倍,又因为两个班的平均分均超过80分,不高于100分,所以这个数只能为12.

所以甲班的平均分比乙班的平均分高12×(8-7)=12分.

4.某乡水电站按户收取电费,具体规定是:如果每月用电不超过24度,就按每度9分钱收费;如果超过24度,超出的部分按每度2角钱收费.已知在某月中,甲家比乙家多交了电费9角6分钱(用电按整度计算),问甲、乙两家各交了多少电费?

【分析与解】 如果甲、乙两家用电均超过24度,那么他们两家的电费差应是2角钱的整数倍;

如果甲、乙两家用电均不超过24度,那么他们两家的电费差应是9分钱的整数倍.

现在9角6分既不是2角钱的整数倍,又不是9分钱的整数倍,所以甲家的用电超过了24度,乙家的用电不超过24度.

设甲家用了24+x度电,乙家用了24-y度电,有20x+9y=96,得x=3,y=4.

即甲家用了27度电,乙家用了20度电,那么乙家应交电费20×9=180分=1元8角,则甲家交了180+96=276分=2元7角6分.

即甲、乙两家各交电费2元7角6分,1元8角.

5.一小、二小两校春游的人数都是10的整数倍,出行时两校人员不合乘一辆车,且每辆车尽量坐满.现在知道,若两校都租用有14个座位的旅游车,则两校共需租用这种车72辆;若两校都租用19个座位的旅游车,则二小要比一小多租用这种车7辆.问两校参加这次春游的人数各是多少?

【分析与解】 设二小春游人数为m,一小春游人数为n.由已知乘19座面包车二小比一小多租用7辆.所以 19×6+1≤m-n≤19×8-1,即115≤m-n≤151.

又已知两校共需租用14座面包车72辆,所以 70×14+2≤m+n≤72×14,即982≤m+n≤1008.

同时已知m与n都是10的倍数,于是有

, 解得 , 另外四组因为解得m、n不是10的倍数.

经检验只有 满足.

所以,一小参加春游430人,二小参加春游570人.

6.某游客在10时15分由码头划出一条小船,他欲在不迟于13时回到码头.河水的流速为每小时1.4千米,小船在静水中的速度为每小时3千米,他每划30分钟就休息15分钟,中途不改变方向,并在某次休息后往回划.那么他最多能划离码头多远?

【分析与解】 从10时15分出发,不迟于13时必须返回,所以最多可划行2小时45分,即165分钟.165=4×30+3×15,最多可划4个30分钟,休息3个15分钟.

顺流速度为3+1.4=4.4千米/4,时;所以顺流半小时划行路程为4.4×0.5=2.2千米;

逆流速度为3-1.4=1.6千米/4,时;所以逆流半小时划行路程为1.6×0.5=0.8千米.

休息15分钟,则船顺流漂行的路程为1.4×0.25=0.35千米.

第一种情况:当开始顺流时,至少划行半小时,行驶2.2千米,而在休息的3个时问内船又顺流漂行0.35×3=1.05千米的路程,所以逆流返回时需划行2.2+1.05=3.25千米.

3.25÷1.6=2.03125小时=121.875分钟.即最少需30+15×3+121.875=196.875分钟165分钟,来不及按时还船.不满足.

第二种情况:当开始逆流时,每逆流半小时,则行驶0.8千米,则3次逆流后,行驶了0.8×3=2.4千米,船在游客休息时顺流漂行了1.05千米,所以回划时只用划行2.4-1.05=1.35千米的路程,需1.35÷4.4≈0.3068小时≈18.41分钟.共需3×30+3×15+18.41=153.41分钟165分钟,满足.

于是,只有第二种情况满足,此时最远的路程为休息了2次后第3次逆流所至的地点,为0.8×3-0.35×2=1.7千米.

所以,他最多能划离码头1.7千米.

7. 机械厂计划生产一批机床,原计划每天生产40台,可在预定的时间内完成任务,实际每天生产48台,结果提前4天完成任务,求这批机床有多少台?

48×[40×4÷(48-40)]=960(台)

8. 某印刷厂计划用24天装订一批书,每天装订12000本,实际提前4天完成了任务,实际比原计划每天多装订多少本?

【分析与解】12000×24÷(24-4)-12000=2400(本)

9. 甲、乙两砖厂,甲厂原存砖87500块,乙厂比甲厂多存砖4500块,某日甲厂卖出25000块,乙厂比甲厂少卖出3000块,这时哪厂存砖多?多多少块?

【分析与解】甲厂存砖:87500-25000=62500(块)

乙厂存砖:(87500+4500)-(25000-3000)=70000(块)

∴ 乙厂存砖多,多 70000-62500=7500(块)

10. 一筐苹果连筐共重45千克,卖出一半后,剩下的苹果连筐共重24千克,求原来有苹果多少千克?

【分析与解】(45-24)×2=42(千克)

11.小明上午8时骑自行车以每小时12千米的速度从A地到B地,小强上午8时40分骑自行车以每小时16千米的速度从B地到A地,两人在A、B两地的中点处相遇,A、B两地间的路程是多少千米?

【分析与解】这是一个相向而行相遇求路程的问题。但两人不是同时出发,如果能转换成同时出发,并且求出行多少小时相遇,就可以用数学课学的方法解答。

两人在两地间的路程的中点相遇,但小明比小强多行了40分钟,如果两人同时出发,相遇时,小明行的路程就比小强少12÷60×40=8(千米),就是当小强出发时,小明已经行了8千米,从8时40分起两人到两人相遇,由于小明每小时比小强少行16-12=4(千米),说明两人相遇时间是8÷4=2(小时),那么,A、B两地间的路程是8+(12+16)×2=64(千米)。

答:A、B两地间的路程是64千米。

12:甲、乙两村相距3550米,小伟从甲村步行往乙村,出发5分钟后,小强骑自行车从乙村前往甲村,经过10分钟遇见小伟。小强骑车每分钟行的比小伟步行每分钟多160米,小伟每分钟走多少米?

【分析与解】如果小强每分钟少行160米,他行的速度就和小伟步行的速度相同,这样小强10分钟就少行了160×10=1600(米),小伟(5+10)分钟和小强10分钟一共行走的路程是3550-1600=1950(米),那么小伟每分钟走的路是1950÷(5+10+10)=78(米)。

答:小伟每分钟走78米。

13:客车从东城和货车从西城同时开出,相向而行,客车每小时行44千米,货车每小时行36千米,客车到西城比货车到东城早2小时。两车开出后多少小时在途中相遇?

【分析与解】当客车到西城时,货车离东城还有2×36=72(千米),而货车每小时行的比客车少44-36=8(千米),客车行东西城间的路程用的时间是72÷8=9(小时),因此东西城相距44×9=396(千米),两车从出发到相遇用的时间是;396÷(44+36)=4.95(小时)

答:两车开出后4.95小时在途中相遇。

14:甲、乙二人同一天从北京出发沿同一条路骑车往广州,甲每天行100千米,乙第一天行70千米,以后每天都比前一天多行3千米,直到追上甲,乙出发后第几天追上甲?

【分析与解】二人同时、同地出发同向而行,但开始时,乙比甲行得慢,当乙的速度增加到与甲相同前,两人间的距离越拉越大,当乙的速度超过甲时,两人间的距离又越来越近,直到乙追上甲。

开始时,乙一天行的比甲少100-70=30(千米),以后乙每天多行3千米,到与甲速相同要经过30÷3=10(天),即前10天,甲、乙之间的距离是逐天拉大的,第11天两人速度相同,从第12天起,乙的速度开始比甲快,与甲的距离逐天拉近,所以,乙追上甲用的时间是:10×2+1=21(天)。

答:乙出发后第21天追上甲。

15:甲、乙两地相距10千米,快、慢两车都从甲地开往乙地,快车开出时,慢车已行了1.5千米,当快车到达乙地时,慢车距乙地还有1千米,那么快车在距乙地多少千米处追上慢车?

【分析与解】慢车行了1.5千米,快车才开出,而快车到达乙地时,慢车距乙地还有1千米,就是在快车行10千米的时间里,比慢车多行的路程为1.5+1=2.5(千米)。快车每行1千米比慢车多2.5÷10=0.25(千米)。

16. 有7个数,它们的平均数是18。去掉一个数后,剩下6个数的平均数是19;再去掉一个数后,剩下的5个数的平均数是20。求去掉的两个数的乘积。

【分析与解】7*18-6*19=126-114=12

6*19-5*20=114-100=14

去掉的两个数是12和14它们的乘积是12*14=168

17. 有七个排成一列的数,它们的平均数是 30,前三个数的平均数是28,后五个数的平均数是33。求第三个数。

【分析与解】28×3+33×5-30×7=39。

18. 有两组数,第一组9个数的和是63,第二组的平均数是11,两个组中所有数的平均数是8。问:第二组有多少个数?

【分析与解】设第二组有x个数,则63+11x=8×(9+x),解得x=3。

19.小明参加了六次测验,第三、第四次的平均分比前两次的平均分多2分,比后两次的平均分少2分。如果后三次平均分比前三次平均分多3分,那么第四次比第三次多得几分?

【分析与解】第三、四次的成绩和比前两次的成绩和多4分,比后两次的成绩和少4分,推知后两次的成绩和比前两次的成绩和多8分。因为后三次的成绩和比前三次的成绩和多9分,所以第四次比第三次多9-8=1(分)。

20. 妈妈每4天要去一次副食商店,每 5天要去一次百货商店。妈妈平均每星期去这两个商店几次?(用小数表示)

【分析与解】每20天去9次,9÷20×7=3.15(次)。

编辑于 2020-02-13

查看全部8个回答

数学考试题,数学题目大全,0元试听,总结高效提分方法。

值得一看的数学相关信息推荐

数学考试题,掌门1对1拥有10000+教研人员,1对1针对性教学,查缺补漏,快速提升!数学考试题,初高中在线1对1辅导,好老师1对1辅导教出好成绩。

上海掌小门教育科技..广告 

掌门优课在线高二数学题目及答案辅导_一线名师在线教学

名师高二数学题目及答案辅导,全程视频互动,结合地域差异,个性化教学,2节精品小班课免费领!

上海掌小门教育科技..广告 

相关问题全部

广告数学题五年级_数学冲刺高分的秘籍_名师来告诉你

数学题五年级_作业帮,紧扣当地教材,快速吃透教材重难点,短时冲刺高分必备。学完就测评孩子成绩提升看得见!

572020-06-03

20道五年级下学期奥数题(简单一点的)不要答案

第六届小学“希望杯”全国数学邀请赛一、填空题(每小题5分,共60分)1、(1 +2 +8 )÷(1 +2 +8 )= 2、奥运吉祥物中的5个“福娃”取“北京欢迎您”的谐音:贝贝、京京、欢欢、迎迎、妮妮。如果在盒子中从左向右放5个不同的“福娃”,那么,有 种不同的放法。3、有一列数:1,1,3,8,22,60,164,448……其中的前三个数是1,1,3,从第四个数起,每个数都是这个数前面两个数之和的2倍。那么,这列数中的第10个数是 4、有一排椅子有27个座位,为了使后去的人随意坐在哪个位置都有人与他相邻,则至少要先坐 人。5、一个拧紧瓶盖的瓶子里装着一些水(如图1),由图中的数据可推知瓶子的容积是 立方厘米;( 取3.14)6、某小区有一块如图2所示的梯形空地,根据图中的数据计算,空地的面积是 平方米。 7、如图3,棱长分别为1厘米,2厘米,3厘米,5厘米的四个正方体紧贴在一起,则所得到的多面体的表面积是 平方厘米。8、五年级一班共有36人,每人参加一个兴趣小组,共有A,B,C,D,E五个小组,若参加A组的有15人,参加B组的仅次于A组,参加C组、D组的人数相同。参加E组的人数最少,只有4人,那么,参加B组的有 人。 9、菜地里的西红柿获得丰收,摘了全部的 时,装满了3筐还多16千克。摘完其余部分后,又装满6筐,则共收得西红柿 千克。10、工程队修一条公路,原计划每天修720米,实际每天比原计划多修80米。因而提前3天完成任务。这条路全长 千米。11、王叔叔开车从北京到上海,从开始出发,车速即比原计划的速度提高了 ,结果提前一个半小时到达;返回时,按原计划的速度行驶280千米后,将车速提高 ,于是提前1小时40分到达北京。北京、上海两市间的路程是 千米。12、两个完全相同长方体的长、宽、高分别是5厘米、4厘米、3厘米,把它们拼在一起可组成一个新长方体,在这些长方体中,表面积最小的是 平方厘米。二、解答题(本大题共4小题,每小题15分,共60分)要求:写出推算过程13、著名的哥德巴赫猜想:“任意一个大于4的偶数都可以表示为两个质数的和”。如6=3+3,12=5+7,等。那么自然数100可以写成多少种两个不同质数和的形式?请分别写出来(100=3+97和100=97+3算作同一种形式)14、如图4(a),ABCD是一个长方形,其中阴影部分是由一副面积为100平方厘米的七巧板(图4(b))拼成。那么,长方形ABCD的面积是多少平方厘米? 15、号码分别为2005、2006、2007、2008的4名运动员进行乒乓球赛,规定每2人比赛的场数是他们号码的和被4除所得的余数。那么2008号运动员比赛了多少场?16、有一个蓄水池装了9根相同的水管,其中一根是进水管,其余8根是出水管。开始时,进水管以均匀的速度不同地向蓄水池注水。后来,想打开出水管,使池内的水全部排光。如果同时打开8根出水管,则3小时可排尽池内的水;如果仅打开5根出水管,则需6小时才能排尽池内的水。若要在4.5小时内排尽池内的水,那么应当同时打开多少根出水管第二届华博士小学数学奥林匹克网上竞赛试题及答案选择正确的答案: (1)在下列算式中加一对括号后,算式的最大值是( )。7 × 9 + 12 ÷ 3 - 2 A 75 B 147 C 89 D 90(2)已知三角形的内角和是180度.一个五边形的内角和应是( )度.A 500 B 540 C 360 D 480(3)甲乙两个数的和是15.95,甲数的小数点向右移动一位就等于乙数,那么 甲数是( ). A 1.75 B 1.47 C 1.45 D 1.95(4)一个顾客买了6瓶酒,每瓶付1.3元,退空瓶时,售货员说,每只空瓶钱比酒钱 少1.1元,顾客应退回的瓶钱是( )元.A 0.8 B 0.4 C 0.6 D 1.2(5)两数相除得3余10,被除数,除数,商与余数之和是143,这两个数分别是( ) 和( ). A 30和100 B 110和30 C 100和34 D 95和40(6) 今年爸爸和女儿的年龄和是44岁,10年后,爸爸的年龄是女儿的3倍,今年女儿是多少岁? A16 B11 C9 D10 (7)一个两位数除250,余数是37,这样的两位数是( ).A 17 B38 C 71 D 91(8)把一条细绳先对折,再把它所折成相等的三折,接着再对折,然后用剪刀在折过三次的绳中间剪一刀,那么这条绳被剪成( )段.A 13 B 12 C 14 D 15(9) 把两个表面积都是6平方厘米的正方体拼成一个长方体,这个长方体的表面积( ). A 12 B 18 C10 D11(10)一昼夜钟面上的时针和分针重叠( )次.A 23 B 12 C 20 D13(11)某车间四月份实际生产机器76台,其中原计划生产的台数比超产台数多60台, 求四月份比原计划超产多少台机器?A 16 B 8 C 10 D 12(12)一块红砖长25厘米,宽15厘米,用这样的红砖拼成一个正方形最少需要多少块? A 15 B 12 C 75 D 8 E(13)图中ABCD是长方形,已知AB=4厘米,BC=6厘米,三角形EFD的面积比三角形ABF的面积大6平方厘米,求ED=?厘米A 9 B 7 C 8 D 6 F DA BC (14)一天,甲乙丙三人去郊外钓鱼已知甲比乙多钓6条,丙钓的是甲的2 倍,比乙多钓22条,问他们三人一共钓了多少条?A 48 B 50 C 52 D 58(15)张师傅以1元钱4个苹果的价格买进苹果若干个,又以2元钱5个苹果有价格把这些苹果卖出,如果他要赚得15元钱的利润,那么他必须卖出苹果多少个?A 10 B 100 C 20 D 1602006年“希望杯”全国数学大赛(时间:90分钟 满分:120分)题 号一二其中:总 分13141516得 分 得分评卷人 一、填空题。(每题6分,共72分。) 1.计算:1+++++++++…+++…++…++=____________。2.8+88+888+…+88…8的和的个位上的数字是____________。3.有四个连续奇数的和是2008,则其中最小的一个奇数是____________。4.张阿姨把相同数量的苹果和橘子分给若干名小朋友,每名小朋友分得1个苹果和3个橘子。最后橘子分完了,苹果还剩下12个。那么一共分给了____________名小朋友。5.有这样一种算式:三个不同的自然数相乘,积是100。这样的算式有____________种。(交换因数位置的算同一种。)6.在右边的数阵中,如果按照从上往下,从左往右的顺序数数,可以知道第1个数是1,第3个数是2,第6个数是3,……那么第99个数是____________。7.一天,小慧和刘老师一起谈心。小慧问:“老师,您今年有多少岁?”刘老师回答说:“你猜猜,当我像你这么大时,你才1岁;当你到我这么大时,我就34岁了。”刘老师今年的年龄是____________岁。8.小华同学为了在“希望杯”数学大赛中取得好成绩,自己做了四份训练题(每份训练题满分为120分)。他第一份训练题得了90分,第二份训练题得了100分,那么第三份训练题至少要得____________分才能使四份训练题的平均成绩达到105分。9.某小学五年级有9名同学进入了“希望杯”数学大赛的决赛。已知他们在初赛中前3名同学的平均分比前6名同学的平均分多3分,后6名同学的平均分比后3名同学的平均分多3分。那么前3名同学的总分比后3名同学的总分多____________分。10.在右图中,已知正方形ABCD的面积是正方形EFGH面积的4倍,正方形AMEN的周长是4厘米,那么正方形ABCD的周长是____________厘米。11.一个自然数各个数位上的数字之和是15。如果它 的各个数位上的数字都不相同,那么符合条件的最大数是____________,最小数是____________。12.对自然数作如下操作:如果是偶数就除以2,如果是奇数就减去1,如此操作直到结果变成0为止。那么经过6次操作后使结果变成0的数有______个,分别是_____________________________________。得分评卷人 二、解答题。(每题12分,共48分。) 13.五名裁判员给一名体操运动员评分,去掉一个最高分和一个最低分后平均得分是9.38分。若去掉一个最高分平均得分为9.26分;若去掉一个最低分平均得分为9.46分。这名体操运动员的最高分和最低分分别是多少分?14.小狗给动物王国编一本童话故事书。 我编这本书一共用了666个数字。小狗编的这本书一共有多少页?15.学校合唱团全部是来自甲、乙、丙三个班的同学,其中来自甲、乙两班的同学共有60人。合唱团中不是甲班的同学有100人,不是乙班的同学有90人。问:(1)合唱团中来自甲、乙两班的同学各有多少人?(2)合唱团的同学一共有多少人?16.下面是一些“神秘等式”。式中的“+”、“-”、“×”、“÷”等运算符号的意义都与普通的用法相同,但0、1、2、3、……、9等数字所代表的意义则与普通的不同。① 1×5=1 ② 7×2=96 ③ 99-5=3④ 83÷4=4 ⑤ 5×5…×5=6 ⑥ 9+(7×8)=97(1)请你破解出这些“神秘等式”中的秘密,找出其中每个数字所代表的普通意义。(2)普通意义的2006用“神秘等式”中数字所代表的意义来表示,怎样表示?(3)如果采用“神秘等式”中数字所代表的意义,那么,60+06等于多少?

1 浏览560

求,,,20道小学五年级的奥数题及答案!

1.甲乙丙三人同时从同一地点出发沿同一路线追赶前面的小明;他们三人分别用9分,15分,20分追上小明,已知甲每小时行24千米,以每小时行20千米,求丙每小时行多少千米? 甲9分追上时行走了24*9/60=3.6,乙9分时行走了20*9/60=3,说明在9分时,乙和小明距离为0.6,15分时乙追上,用了6分追了0.6千米,说明乙比小明每分多走0.1千米,乙速度为20,则小明为14千米每小时,则设丙速度为x 9/60*x+11/60*(x-14)=3.6 x=18.5(千米每小时) 2.甲乙两人同时从山脚开始爬山,到达山顶后就立即下山,甲乙两人下山的速度都是各自上山速度的二倍,嫁到山顶是一句山顶还有500米,甲回到山脚是乙刚好下到半山腰,求从山脚到山顶的路程。 甲乙两人下山的速度都是各自上山速度的二倍,甲到山顶时乙距山顶还有500米,甲到山脚时乙距离山脚距离为500*(1+2)=1500米。 甲回到山脚是乙刚好下到半山腰,所以,从山脚到山顶的路程为3000米 3.甲一分钟能洗3个盘子或9个碗,乙一分钟能洗2个盘子或7个碗,甲乙两人合作,20分钟洗了134个盘子和碗,问洗了几个盘子几个碗? 设甲乙各用x、y分钟洗盘子,则 3x+9(20-x)+2y+7(20-y)=134 6x+5y=186 x=20,y=20 x=16, y=18 所以,盘子=16*3+18*2=84个,碗=4*9+2*7=50个 4.全班有30名学生,其中17人会骑自行车,16人会游泳,11人会滑冰,

[img]

100到小学五年级奥数题,题目及答案

小学五年级奥数题——速算与巧算

在日常生活和解答数学问题时,经常要进行计算,在数学课里我们学习五年级奥数题100道及答案了一些简便计算的方法,但如果善于观察、勤于思考,计算中还能找到更多的巧妙的计算方法,不仅使你能算得好、算得快,还可以让你变得聪明和机敏。

例1:计算:9.996+29.98+169.9+3999.5

解:算式中的加法看来无法用数学课中学过的简算方法计算,但是,这几个数每个数只要增加一点,就成为某个整十、整百或整千数,把这几个数“凑整”以后,就容易计算了。当然要记住,“凑整”时增加了多少要减回去。

9.996+29.98+169.9+3999.5

=10+30+170+4000-(0.004+0.02+0.1+0.5)

=4210-0.624

=4209.376

例2:计算:1+0.99-0.98-0.97+0.96+0.95-0.94-0.93+…+0.04+0.03-0.02-0.01

解:式子的数是从1开始,依次减少0.01,直到最后一个数是0.01,因此,式中共有100个数而式子中的运算都是两个数相加接着减两个数,再加两个数,再减两个数……这样的顺序排列的。

由于数的排列、运算的排列都很有规律,按照规律可以考虑每4个数为一组添上括号,每组数的运算结果是否也有一定的规律?可以看到把每组数中第1个数减第3个数,第2个数减第4个数,各得0.02,合起来是0.04,那么,每组数(即每个括号)运算的结果都是0.04,整个算式100个数正好分成25组,它的结果就是25个0.04的和。

1+0.99-0.98-0.97+0.96+0.95-0.94-0.93+…+0.04+0.03-0.02-0.01

=(1+0.99-0.98-0.97)+(0.96+0.95-0.94-0.93)+…+(0.04+0.03-0.02-0.01)

=0.04×25

=1

如果能够灵活地运用数的交换的规律,也可以按下面的方法分组添上括号计算:

1+0.99-0.98-0.97+0.96+0.95-0.94-0.93+…+0.04+0.03-0.02-0.01

=1+(0.99-0.98-0.97+0.96)+(0.95-0.94-0.93+0.92)+…+(0.03-0.02-0.01)

=1

例3:计算:0.1+0.2+0.3+…+0.8+0.9+0.10+0.11+0.12+…+0.19+0.20

解:这个算式的数的排列像一个等差数列,但仔细观察,它实际上由两个等差数列组成,0.1+0.2+0.3+…+0.8+0.9是第一个等差数列,后面每一个数都比前一个数多0.1,而0.10+0.11+0.12+…+0.19+0.20是第二个等差数列,后面每一个数都比前一个数多0.01,所以,应分为两段按等差数列求和的方法来计算。

0.1+0.2+0.3+…+0.8+0.9+0.10+0.11+0.12+…+0.19+0.20

=(0.1+0.9)×9÷2+(0.10+0.20)×11÷2

=4.5+1.65

=6.15

例4:计算:9.9×9.9+1.99

解:算式中的9.9×9.9两个因数中一个因数扩大10倍,另一个因数缩小10倍,积不变,即这个乘法可变为99×0.99五年级奥数题100道及答案;1.99可以分成0.99+1的和,这样变化以后,计算比较简便。

9.9×9.9+1.99

=99×0.99+0.99+1

=(99+1)×0.99+1

=100

例5:计算:2.437×36.54+243.7×0.6346

解:虽然算式中的两个乘法计算没有相同的因数,但前一个乘法的2.437和后一个乘法的243.7两个数的数字相同,只是小数点的位置不同,如果把其中一个乘法的两个因数的小数点按相反方向移动同样多位,使这两个数变成相同的,就可以运用乘法分配律进行简算了。

2.437×36.54+243.7×0.6346

=2.437×36.54+2.437×63.46

=2.437×(36.54+63.46)

=243.7

*例6:计算:1.1×1.2×1.3×1.4×1.5

解:算式中的几个数虽然是一个等差数列,但算式不是求和,不能用等差数列求和的方法来计算这个算式的结果。

平时注意积累计算经验的同学也许会注意到7、11和13这三个数连乘的积是1001,而一个三位数乘1001,只要把这个三位数连续写两遍就是它们的积,例如578×1001=578578,这一题参照这个方法计算,能巧妙地算出正确的得数。

1.1×1.2×1.3×1.4×1.5

=1.1×1.3×0.7×2×1.2×1.5

=1.001×3.6

=3.6036

计算下列各题并写出简算过程:

1.5.467+3.814+7.533+4.186

2.6.25×1.25×6.4

3.3.997+19.96+1.9998+199.7

4.0.1+0.3+…+0.9+0.11+0.13+0.15+…+0.97+0.99

5.199.9×19.98-199.8×19.97

6.23.75×3.987+6.013×92.07+6.832×39.87

*7.20042005×20052004-20042004×20052005

*8.(1+0.12+0.23)×(0.12+0.23+0.34)-(1+0.12+0.23+0.34)×(0.12+0.23)

计算下列各题并写出简算过程:

1.6.734-1.536+3.266-4.464

2.0.8÷0.125

3.89.1+90.3+88.6+92.1+88.9+90.8

4.4.83×0.59+0.41×1.59-0.324×5.9

5.37.5×21.5×0.112+35.5×12.5×0.112

五年级下册数奥试题

姓名 班级 得分

用简便方法计算下面各题。

20.36-7.98-5.02-4.36 117.8÷2.3-4.88÷023

9.56×4.18-7.34×4.18-0.26×4.18

1、有123名小朋友,把他们分成12人一组或7人一组,恰好分完,而无剩余。又知总的组数在15组左右。那么,12人的多少组?7人的有多少组?

2、张妮5次考试的平均成绩是88.5分,每次考试的满分是100分,为了使平均成绩尽快达到92分以上,那么张妮要再考多少次满分?

3、父亲与三个儿子年龄和是108岁,若再过6年,父亲的年龄正好等于三个儿子年龄的和。问父亲现年多少岁?

4、加工一批零件,原计划每天加工80个,正好按期完成任务。由于改进了生产技术,实际每天加工了100个,这样,不仅提前4天完成加工任务,而且还多加工了100个。他们实际加工零件多少个?

5、一个水池能装8吨水,水池里装有一个进水管和一个出水管,两管齐开,20分钟能把一池水放完。已知进水管每分钟往池里进水0.8吨,求出水管每分钟放水多少吨?

6、将一根电线截成15段。一部分每段长8米,另一部分每段长5米。长8米的总长度比长5米的总长度多3米。这根铁丝全长多少米?

7、把一条大鱼分成鱼头、鱼身、鱼尾三部分,鱼尾重4千克,鱼头的重量等于鱼尾的重量加鱼身一半的重量,而鱼身的重量等于鱼头的重量加上鱼尾的重量。这条大鱼重多少千克?

8、体育室买回5个足球和4个篮球需要付287元,买2个足球和3个篮球需要付154元。那么买一个足球、一个篮球各付多少元?

9、有5元的和10元的人民币共14张,共100元。问5元币和10元币各多少张?

10、某人从A村翻过山顶到B村,共行30.5千米,用了7小时,他上山每小时行4千米,下山每小时行5千米。如果上下山速度不变,从B村沿原路返回A村,要用多少时间?

11、甲、乙两人同时从A、B两地相向而行,甲骑车每小时行16千米,乙骑摩托车每小时行65千米。甲离出发点62.4千米处与乙相遇。AB两地相距多少千米?

12、乌龟与兔子赛跑,兔子每分钟跑35千米,乌龟每分钟爬10米,途中兔子睡了一觉,醒来时发现乌龟已经在自己前50米。问兔子还需要多少长时间才能追上乌龟?

13、在一个600米长的环形跑道上,兄妹两人同时在同一起点都按顺时针方向跑步,每隔12分钟相遇一次。若两人速度不变,还是在原出发点同时出发,哥哥改为按逆时针方向跑,则每隔4分钟相遇一次。两人跑一圈各要几分钟?

14、静水中,甲乙两船的速度分别是每小时20千米和16千米,两船先后自某港顺水开出,乙比甲早出发2小时,若水速是每小时行4千米,甲开出后几小时追上乙?

15、一列火车通过440米的桥需要40秒,以同样的速度穿过310米的遂道需要30秒,这列火车的速度和本身长各是多少?

16、一个书架分上、下两层,上层的书的本数是下层的4倍。从下层拿5本放入上层后,上层的本数正好是下层的5倍。原来下层有几本书?

17、有1800千克的货物,分装在甲、乙、丙三辆车上。已知甲车装的千克数正好是乙车的2倍,乙车比丙车多装200千克。甲、乙、丙三辆车各

包含与排除

1、某班有40名学生,其中有15人参加数学小组,18人参加航模小组,有10人两个小组都参加。那么有多少人两个小组都不参加?

解:两个小组共有(15+18)-10=23(人),

都不参加的有40-23=17(人)

答:有17人两个小组都不参加。

--

2、某班45个学生参加期末考试,成绩公布后,数学得满分的有10人,数学及语文成绩均得满分的有3人,这两科都没有得满分的有29人。那么语文成绩得满分的有多少人?

解:45-29-10+3=9(人)

答:语文成绩得满分的有9人。

3、50名同学面向老师站成一行。老师先让大家从左至右按1,2,3,……,49,50依次报数五年级奥数题100道及答案;再让报数是4的倍数的同学向后转,接着又让报数是6的倍数的同学向后转。问:现在面向老师的同学还有多少名?

解:4的倍数有50/4商12个,6的倍数有50/6商8个,既是4又是6的倍数有50/12商4个。

4的倍数向后转人数=12,6的倍数向后转共8人,其中4人向后,4人从后转回。

面向老师的人数=50-12=38(人)

答:现在面向老师的同学还有38名。

4、在游艺会上,有100名同学抽到了标签分别为1至100的奖券。按奖券标签号发放奖品的规则如下:(1)标签号为2的倍数,奖2支铅笔;(2)标签号为3的倍数,奖3支铅笔;(3)标签号既是2的倍数,又是3的倍数可重复领奖;(4)其他标签号均奖1支铅笔。那么游艺会为该项活动准备的奖品铅笔共有多少支?

解:2的倍数有100/2商50个,3的倍数有100/3商33个,2和3人倍数有100/6商16个。

领2支的共准备(50—16)*2=68,领3支的共准备(33—16)*3=51,重复领的共准备16*(2+3)=80,其余准备100-(50+33-16)*1=33

共需要68+51+80+33=232(支)

答:游艺会为该项活动准备的奖品铅笔共有232支。

5、有一根长为180厘米的绳子,从一端开始每隔3厘米作一记号,每隔4厘米也作一记号,然后将标有记号的地方剪断。问绳子共被剪成了多少段?

解:3厘米的记号:180/3=60,最后到头了不划,60-1=59个

4厘米记号:180/4=45,45-1=44个,重复的记号:180/12=15,15-1=14个,所以绳子中间实际有记号59+44-14=89个。

剪89次,变成89+1=90段

答:绳子共被剪成了90段。

6、东河小学画展上展出了许多幅画,其中有16幅画不是六年级的,有15幅画不是五年级的。现知道五、六年级共有25幅画,那么其他年级的画共有多少幅?

解:1,2,3,4,5年级共有16,1,2,3,4,6年级共有15,5,6年级共有25

所以总共有(16+15+25)/2=28(幅),1,2,3,4年级共有28-25=3(幅)

答:其他年级的画共有3幅。

---

7、有若干卡片,每张卡片上写着一个数,它是3的倍数或4的倍数,其中标有3的倍数的卡片占2/3,标有4的倍数的卡片占3/4,标有12的倍数的卡片有15张。那么,这些卡片一共有多少张?

解:12的倍数有2/3+3/4-1=5/12,15/(5/12)=36(张)

答:这些卡片一共有36张。

--

--

8、在从1至1000的自然数中,既不能被5除尽,又不能被7除尽的数有多少个?

解:5的倍数有1000/5商200个,7的倍数有1000/7商142个,既是5又是7的倍数有1000/35商28个。5和7的倍数共有200+142-28=314个。

1000-314=686

答:既不能被5除尽,又不能被7除尽的数有686个。

---

9、五年级三班学生参加课外兴趣小组,每人至少参加一项。其中有25人参加自然兴趣小组,35人参加美术兴趣小组,27人参加语文兴趣小组,参加语文同时又参加美术兴趣小组的有12人,参加自然同时又参加美术兴趣小组的有8人,参加自然同时又参加语文兴趣小组的有9人,语文、美术、自然3科兴趣小组都参加的有4人。求这个班的学生人数。

解:25+35+27-(8+12+9)+4=62(人)

答:这个班的学生人数是62人。

-- --

10、如图8-1,已知甲、乙、丙3个圆的面积均为30,甲与乙、乙与丙、甲与丙重合部分的面积分别为6,8,5,而3个圆覆盖的总面积为73。求阴影部分的面积。

解:甲、乙、丙三者重合部分面积=73+(6+8+5)-3*30=2

阴影部分面积=73-(6+8+5)+2*2=58

答:阴影部分的面积是58。

________________________________________

-- 作者:abc

-- 发布时间:2004-12-12 15:45:02

--

11、四年级一班有46名学生参加3项课外活动。其中有24人参加了数学小组,20人参加了语文小组,参加文艺小组的人数是既参加数学小组又参加文艺小组人数的3.5倍,又是3项活动都参加人数的7倍,既参加文艺小组也参加语文小组的人数相当于3项都参加的人数的2倍,既参加数学小组又参加语文小组的有10人。求参加文艺小组的人数。

解:设参加文艺小组的人数是X,24+20+X-(X/305+2/7*X+10)+X/7=46,解得X=21

答:参加文艺小组的人数是21人。

________________________________________

-- 作者:abc

-- 发布时间:2004-12-12 15:45:43

--

12、图书室有100本书,借阅图书者需要在图书上签名。已知在100本书中有甲、乙、丙签名的分别有33,44和55本,其中同时有甲、乙签名的图书为29本,同时有甲、丙签名的图书有25本,同时有乙、丙签名的图书有36本。问这批图书中最少有多少本没有被甲、乙、丙中的任何一人借阅过?

解:三个人一共看过的书的本数是:甲+乙+丙-(甲乙+甲丙+乙丙)+甲乙丙=33+44+55-(29+25+36)+甲乙丙=42+甲乙丙,当甲乙丙最大时,三人看过的书最多,因为甲、丙共同看过的书只有25本,比甲乙和乙丙共同看到的都少,所以甲乙丙最多共同看过25本。

三人总共看过最多有42+25=67(本),都没看过的书最少有100-67=33(本)

答:这批图书中最少有33本没有被甲、乙、丙中的任何一人借阅过。

________________________________________

-- 作者:abc

-- 发布时间:2004-12-12 15:46:53

--

13、如图8-2,5条同样长的线段拼成了一个五角星。如果每条线段上恰有1994个点被染成红色,那么在这个五角星上红色点最少有多少个?

解:五条线上右发有5*1994=9970个红点,如果所有交叉点上都放一个红点,则红点最少,这五条线有10个交叉点,所以最少有9970-10=9960个红点

答:在这个五角星上红色点最少有9960个。

此主题相关图片如下:

________________________________________

-- 作者:abc

-- 发布时间:2004-12-12 15:47:12

--

14、甲、乙、丙同时给100盆花浇水。已知甲浇了78盆,乙浇了68盆,丙浇了58盆,那么3人都浇过的花最少有多少盆?

解:甲和乙必有78+68-100=46盆共同浇过,丙有100-58=42没浇过,所以3人都浇过的最少有46-42=4(盆)

答:3人都浇过的花最少有4盆。

________________________________________

-- 作者:abc

-- 发布时间:2004-12-12 15:52:54

--

15、甲、乙、丙都在读同一本故事书,书中有100个故事。每个人都从某一个故事开始,按顺序往后读。已知甲读了75个故事,乙读了60个故事,丙读了52个故事。那么甲、乙、丙3人共同读过的故事最少有多少个?

解:乙和丙共同读过的故事至少有60+52-100=12(个),甲无论从哪里开始都必定要读这12个故事。

答:甲、乙、丙3人共同读过的故事最少有12个。

________________________________________

-- 作者:abc

-- 发布时间:2004-12-12 15:53:43

--

15、甲、乙、丙都在读同一本故事书,书中有100个故事。每个人都从某一个故事开始,按顺序往后读。已知甲读了75个故事,乙读了60个故事,丙读了52个故事。那么甲、乙、丙3人共同读过的故事最少有多少个?

解:乙和丙共同读过的故事至少有60+52-100=12(个),甲无论从哪里开始都必定要读这12个故事。

答:甲、乙、丙3人共同读过的故事最少有12个。

________________________________________

-- 作者:cxcbz

-- 发布时间:2004-12-13 21:53:23

--

以下是引用abc在2004-12-12 15:42:17的发言:

8、在从1至1000的自然数中,既不能被5除尽,又不能被7除尽的数有多少个?

解:5的倍数有1000/5商200个,7的倍数有1000/7商142个,既是5又是7的倍数有1000/35商28个。5和7的倍数共有200+142-28=314个。

1000-314=686

答:既不能被5除尽,又不能被7除尽的数有686个。

题中的除尽应该是整除吧.

________________________________________

-- 作者:cxcbz

-- 发布时间:2004-12-13 21:56:00

--

以下是引用abc在2004-12-12 15:45:02的发言:

11、四年级一班有46名学生参加3项课外活动。其中有24人参加了数学小组,20人参加了语文小组,参加文艺小组的人数是既参加数学小组又参加文艺小组人数的3.5倍,又是3项活动都参加人数的7倍,既参加文艺小组也参加语文小组的人数相当于3项都参加的人数的2倍,既参加数学小组又参加语文小组的有10人。求参加文艺小组的人数。

解:设参加文艺小组的人数是X,24+20+X-(X/305+2/7*X+10)+X/7=46,解得X=21

答:参加文艺小组的人数是21人。

1. 四年级三班订阅《少年文摘》的有19人,订阅《学与玩》的有24人,两种都订的有13人。问订阅《

少年文摘》或《学与玩》的有多少人?

2. 幼儿园有58人学钢琴,43人学画画,37人既学钢琴又学画画,问只学钢琴和只学画画的分别有多少

人?

3. 1至100的自然数中:

(1)是2的倍数又是3的倍数的数有多少个?

(2)是2的倍数或是3的倍数的数有多少个?

(3)是2的倍数但不是3的倍数的数有多少个?

4. 某班数学、英语期中考试的成绩统计如下:英语得100分的有12人,数学得100分的有10人,两门功

课都得100分的有3人,两门功课都未得100分的有26人。这个班共有学生多少人?

5. 全班50人,会骑车的有32人,会滑旱冰的有21人,两样都会的有8人,求两样都不会的有多少人?

6. 一个班有学生42人,参加体育队的有30人,参加文艺队的有25人,并且每人至少参加一个队。这个

班两队都参加的有多少人?

【试题答案】

1. 四年级三班订阅《少年文摘》的有19人,订阅《学与玩》的有24人,两种都订的有13人。问订阅《少年文摘》

或《学与玩》的有多少人?

19 + 24—13 = 30(人)

答:订阅《少年文摘》或《学与玩》的有30人。

2. 幼儿园有58人学钢琴,43人学画画,37人既学钢琴又学画画,问只学钢琴和只学画画的分别有多少

人?

只学钢琴人数:58—37 = 21(人)

只学画画人数:43—37 = 6(人)

3. 1至100的自然数中:

(1)是2的倍数又是3的倍数的数有多少个?

既是3的倍数又是2的倍数,一定是6的倍数

100÷6 = 16……4

所以,既是2的倍数又是3的倍数有16个

(2)是2的倍数或是3的倍数的数有多少个?

100÷2 = 50,100÷3 = 33……1

50 + 33—16 = 67(个)

所以,是2的倍数或是3的倍数的数有67个。

(3)是2的倍数但不是3的倍数的数有多少个?

50—16 = 34(个)

答:是2的倍数但不是3的倍数的数有34个。

4. 某班数学、英语期中考试的成绩统计如下:英语得100分的有12人,数学得100分的有10人,两门功

课都得100分的有3人,两门功课都未得100分的有26人。这个班共有学生多少人?

12 + 10—3 + 26 = 45(人)

答:这个班共有学生45人。

5. 全班50人,会骑车的有32人,会滑旱冰的有21人,两样都会的有8人,求两样都不会的有多少人?

50—(30 + 21—8)= 7(人)

答:两样都不会的有7人。

6. 一个班有学生42人,参加体育队的有30人,参加文艺队的有25人,并且每人至少参加一个队。这个

班两队都参加的有多少人?

30 + 25—42 = 13(人)

答:这个班两队都参加的有13人。

某班同学参加升学考试,得满分的人数如下:数学20人,语文20人,英语20人,数学、英语两科满分者8人,数学、语文两科满分者7人,语文、英语两科满分者9人,三科都没得满分者3人.问这个班最多多少人?最少多少人?

分析与解 如图6,数学、语文、英语得满分的同学都包含在这个班中,设这个班有y人,用长方形表示.A、B、C分别表示数学、语文、英语得满分的人,由已知有A∩C=8,A∩B=7,B∩C=9.A∩B∩C=X.

由容斥原理有

Y=A+B+c-A∩B-A∩C-B∩C+A∩B∩C+3

即y=20+20+20-7-8-9+x+3=39+x。

以下我们考察如何求y的最大值与最小值。

由y=39+x可知,当x取最大值时,y也取最大值;当x取最小值时,y也取最小值x是数学、语文、英语三科都得满分的人数,因而他们中的人数一定不超过两科得满分的人数,即x≤7,x≤8且x≤9,由此我们得到x≤7.另一方面数学得满分的同学有可能语文都没得满分,也就是说没有三科都得满分的同学,故x≥0,故0≤x≤7。

当x取最大值7时,y有最大值39+7=46,当x取最小值0时,y有最小值39+0=39。

答:这个班最多有46人,最少有39人。

题1、营业员把一张5元的人民币和一张5角的人民币换成了28张票面为1元和1角的人民币,求换来的这两种人民币各多少张?

题2、有一元,二元,五元的人民币共50张,总面值为116元,已知一元的比二元的多2张,问三种面值的人民币各多少张?

题3、有3元,5元和7元的电影票400张,一共价值1920元,其中7元和5元的张数相等,三种价格的电影票各多少张?

题4、用大、小两种汽车运货,每辆大汽车装18箱,每辆小汽车装12箱,现在有18车货,价值3024元,若每箱便宜2元,则这批货价值2520元,问:大、小汽车各有多少辆?

题5、一辆卡车运矿石,晴天每天可运20次,雨天每天可运12次,它一共运了112次,平均每天运14次,这几天中有几天是雨天?

题6、运来一批西瓜,准备分两类卖,大的每千克0.4元,小的每千克0.3元,这样卖这批西瓜共值290元,如果每千克西瓜降价0.05元,这批西瓜只能卖250元,问:有多少千克大西瓜?

题7、甲、乙二人投飞镖比赛,规定每中一次记10分,脱靶每次倒扣6分,两人各投10次,共得152分,其中甲比乙多得16分,问:两人各中多少次?

题8、某次数学竞赛共有20条题目,每答对一题得5分,错了一题不仅不得分,而且还要倒扣2分,这次竞赛小明得了86分,问:他答对了几道题?

1.解:设有1元的x张,1角的(28-x)张

x+0.1(28-x)=5.5

0.9x=2.7

x=3

28-x=25

答:有一元的3张,一角的25张。

2.解:设1元的有x张,2元的(x-2)张,5元的(52-2x)

x+2(x-2)+5(52-2x)=116

x+2x-4+260-10x=116

7x=140

x=20

x-2=18

52-2x=12

答:1元的有20张,2元18张,5元12张。

3.解:设有7元和5元各x张,3元的(400-2x)张

7x+5x+3(400-2x)=1920

12x+1200-6x=1920

6x=720

x=120

400-2x=160

答:有3元的160张,7元、5元各120张。

4.解:货物总数:(3024-2520)÷2=252(箱)

设有大汽车x辆,小汽车(18-x)辆

18x+12(18-x)=252

18x+216-12x=252

6x=36

x=6

18-x=12

答:有大汽车6辆,小汽车12辆。

5.解:天数=112÷14=8天

设有x天是雨天

20(8-x)+12x=112

160-20x+12x=112

8x=48

x=6

答:有6天是雨天。

6.解:西瓜数:(290-250)÷0.05=800千克

设有大西瓜x千克

0.4x+0.3(800-x)=290

0.4x+240-0.3x=290

0.1x=50

x=500

答:有大西瓜500千克。

7.解:甲得分:(152+16)÷2=84分

乙:152-84=68分

设甲中x次

10x-6(10-x)=84

10x-60+6x=84

16x=144

x=9

设乙中y次

10y-6(10-y)=68

16y=128

y=8

答:甲中9次,乙8次。

8.解:设他答对x道题

5x-2(20-x)=86

5x-40+2x=86

7x=126

x=18

答:他答对了18题。

小学五年级奥数题,及答案

《05.小学奥数【五年级】》百度网盘资源免费下载

链接:

提取码:dqie

05.小学奥数【五年级】|44 五年级计数(2)|43 五年级计数(1)|42 五年级几何(2)|41 五年级几何(1)|40 五年级应用题(5)|39 五年级应用题(4)|38 五年级应用题(3)|37 五年级应用题(2)|36 五年级应用题(1)|35 五年级数字谜|34 五年级数论(2)|33 五年级数论(1)|32 五年级计算(2)|31 五年级计算(1)  

需要100道五年级奥数题

题1、营业员把一张5元的人民币和一张5角的人民币换成了28张票面为1元和1角的人民币,求换来的这两种人民币各多少张?

题2、有一元,二元,五元的人民币共50张,总面值为116元,已知一元的比二元的多2张,问三种面值的人民币各多少张?

题3、有3元,5元和7元的电影票400张,一共价值1920元,其中7元和5元的张数相等,三种价格的电影票各多少张?

题4、用大、小两种汽车运货,每辆大汽车装18箱,每辆小汽车装12箱,现在有18车货,价值3024元,若每箱便宜2元,则这批货价值2520元,问五年级奥数题100道及答案:大、小汽车各有多少辆?

题5、一辆卡车运矿石,晴天每天可运20次,雨天每天可运12次,它一共运了112次,平均每天运14次,这几天中有几天是雨天?

题6、运来一批西瓜,准备分两类卖,大的每千克0.4元,小的每千克0.3元,这样卖这批西瓜共值290元,如果每千克西瓜降价0.05元,这批西瓜只能卖250元,问:有多少千克大西瓜?

题7、甲、乙二人投飞镖比赛,规定每中一次记10分,脱靶每次倒扣6分,两人各投10次,共得152分,其中甲比乙多得16分,问:两人各中多少次?

题8、某次数学竞赛共有20条题目,每答对一题得5分,错了一题不仅不得分,而且还要倒扣2分,这次竞赛小明得了86分,问:五年级奥数题100道及答案他答对了几道题?

1.解:设有1元的x张,1角的(28-x)张

x+0.1(28-x)=5.5

0.9x=2.7

x=3

28-x=25

答:有一元的3张,一角的25张。

2.解:设1元的有x张,2元的(x-2)张,5元的(52-2x)

x+2(x-2)+5(52-2x)=116

x+2x-4+260-10x=116

7x=140

x=20

x-2=18

52-2x=12

答:1元的有20张,2元18张,5元12张。

3.解:设有7元和5元各x张,3元的(400-2x)张

7x+5x+3(400-2x)=1920

12x+1200-6x=1920

6x=720

x=120

400-2x=160

答:有3元的160张,7元、5元各120张。

4.解:货物总数:(3024-2520)÷2=252(箱)

设有大汽车x辆,小汽车(18-x)辆

18x+12(18-x)=252

18x+216-12x=252

6x=36

x=6

18-x=12

答:有大汽车6辆,小汽车12辆。

5.解:天数=112÷14=8天

设有x天是雨天

20(8-x)+12x=112

160-20x+12x=112

8x=48

x=6

答:有6天是雨天。

6.解:西瓜数:(290-250)÷0.05=800千克

设有大西瓜x千克

0.4x+0.3(800-x)=290

0.4x+240-0.3x=290

0.1x=50

x=500

答:有大西瓜500千克。

7.解:甲得分:(152+16)÷2=84分

乙:152-84=68分

设甲中x次

10x-6(10-x)=84

10x-60+6x=84

16x=144

x=9

设乙中y次

10y-6(10-y)=68

16y=128

y=8

答:甲中9次,乙8次。

8.解:设他答对x道题

5x-2(20-x)=86

5x-40+2x=86

7x=126

x=18

答:他答对了18题。

1.甲、乙两地相距465千米,一辆汽车从甲地开往乙地,以每小时60千米的速度行驶一段后,每小时加速15千米,共用了7小时到达乙地。每小时60千米的速度行驶了几小时?

2.笼中装有鸡和兔若干只,共100只脚,若将鸡换成兔,兔换成鸡,则共92只脚。笼中原有兔、鸡各多少只?

3.蜘蛛有8条腿,蜻蜓有6条腿和2对翅膀。蝉有6条腿和1对翅膀。现在这三种小虫共18只,有118条腿和20对翅膀,每种小虫各几只?

4.学雷锋活动中,同学们共做好事240件,大同学每人做好事8件,小同学每人做好事3件,他们平均每人做好事6件。参加这次活动的小同学有多少人?

5.某班42个同学参加植树,男生平均每人种3棵,女生平均每人种2棵,已知男生比女生多种56棵,男、女生各有多少人?

答案:

1.解:设每小时60千米的速度行驶了x小时。

60x+(60+15)(7-x)=465

60x+525-75x=465

525-15x=465

15x=60

x=4

答:每小时60千米的速度行驶了4小时。

2.解:兔换成鸡,每只就减少了2只脚。

(100-92)/2=4只,

兔子有4只。

(100-4*4)/2=42只

答:兔子有4只,鸡有42只。

3.解:设蜘蛛18只,蜻蜓y只,蝉z只。

三种小虫共18只,得:

x+y+z=18……a式

有118条腿,得:

8x+6y+6z=118……b式

有20对翅膀,得:

2y+z=20……c式

将b式-6*a式,得:

8x+6y+6z-6(x+y+z)=118-6*18

2x=10

x=5

蜘蛛有5只,

则蜻蜓和蝉共有18-5=13只。

再将z化为(13-y)只。

再代入c式,得:

2y+13-y=20

y=7

蜻蜓有7只。

蝉有18-5-7=6只。

答:蜘蛛有5只,蜻蜓有7只,蝉有6只。

4.解:同学们共做好事240件,他们平均每人做好事6件,

说明他们共有240/6=40人

设大同学有x人,小同学有(40-x)人。

8x+3(40-x)=240

8x+120-3x=240

5x+120=240

5x=120

x=24

40-x=16

答:大同学有24人,小同学有16人。

5.解:设男生x人,女生(42-x)人。

3x-2(42-x)=56

3x+2x-84=56

5x=140

x=28

42-x=14

答:男生28人,女生14人

牛吃草问题

发布日期:[2007-6-4 21:58:05] 共阅[342]次

1. 一个牧场,草每天匀速生长,每头牛每天吃的草量相同,17头牛30天可以将草吃完,19头牛只需要24天就可以将草吃完,现有一群牛,吃了6天后,卖掉4头牛,余下的牛再吃2天就将草吃完。问没有卖掉4头牛之前,这一群牛一共有多少头?

2. 一个蓄水池,每分钟流入4立方米水。如果打开5个水龙头,2小时半就把水池中的水放光;如果打开8个水龙头,1小时半就把池中的水放光,现打开13个水龙头,问要多少时间才能把水池中的水放光(每个水龙头每小时放走的水量相同)?

3. 甲、乙、丙3个仓库,各存放着同样数量的化肥,甲仓库用皮带输送机一台和12个工人,需要5小时才能把甲仓库搬空;乙仓库用一台皮带输送机和28个工人,需要3小时才能把乙仓库搬空;丙仓库有两台皮带输送机,如果要求2小时把丙仓库搬空,同时还需要多少工人(皮带输送机的功效相同,每个工人每小时的搬运量相同,皮带输送机与工人同时往处搬运化肥)?

4. 快、中、慢3辆车同时从同一地点出发,沿同一条公路追赶前面的一个骑车的小偷,这3辆车分别用6分钟、10分钟、12分钟,追上小偷,现在知道快车的速度是每小时24千米,中车的速度是每小时20千米,问慢车的速度是多少?。

公约公倍和同余

发布日期:[2007-7-28 21:00:27] 共阅[150]次

1.今天是星期六,再过1000天是星期几?

2.已知两个自然数a和b(a>b),已知a和b除以13的余数分别是5和9,求a+b,a-b,a×b,a2-b2各自除以13的余数。

3.2100除以一个两位数得到的余数是56,求这个两位数。

4.被除数、除数、商与余数之和是903,已知除数是35,余数是2,求被除数。

5.用一个整数去除345和543所得的余数相同,且商相差9,求这个数。

6.有一个整数,用它去除312,231,123得到的三个余数之和是41,求这个数。

1.答:根据题意不难看出,这个大班小朋友的人数是115-7=108,148-4=144,74-2=72的最大公约数.所以,这个大班的小朋友最多有36人.

2.答:与上题类似,依题意,正方体的棱长应是9,6,7的最小公倍数,9,6,7的最小公倍数是126.所以,至少需要这种长方体木块 126×126×126÷(9×6×7)=5292(块)

3、答:此数为28。方法同例题。

4、答:这两个数为4与120,或8与60,或12与40,或20与24。方法同例题。

5答:所求的两个数为15与150,或30与135,或45与120,或60与105,或75与90。方法同例题。

6、答:因为1+2+…+9=5×9,所以无论这些九位数的值如何,它们的数字之和总可以被9整除,因而9是所有这些九位数的公约数.现任取这些九位数中的两个相差9的数,如413798256和413798265。

7、答:1925=5×5×7×11 两个商为5和11, 1925÷5=385 ; 1925÷11=175 答:根据1。题意不难看出,这个大班小朋友的人数是115-7=108,148-4=144,74-2=72的最大公约数.所以,这个大班的小朋友最多有36人.

2.答:与上题类似,依题意,正方体的棱长应是9,6,7的最小公倍数,9,6,7的最小公倍数是126.所以,至少需要这种长方体木块 126×126×126÷(9×6×7)=5292(块)

3.答:此数为28。方法同例题。

4.答:这两个数为4与120,或8与60,或12与40,或20与24。方法同例题。

5.答:所求的两个数为15与150,或30与135,或45与120,或60与105,或75与90。方法同例题。

6.答:因为1+2+…+9=5×9,所以无论这些九位数的值如何,它们的数字之和总可以被9整除,因而9是所有这些九位数的公约数.现任取这些九位数中的两个相差9的数,如413798256和413798265。

答:1925=5×5×7×11 两个商为5和11, 1925÷5=385 ; 1925÷11=175

7.幼儿园有糖115颗、饼干148块、桔子74个,平均分给大班小朋友,结果糖多出7颗,饼干多出4块,桔子多出2个.这个大班的小朋友最多有几个人?

8.用长是9厘米、宽是6厘米、高是7厘米的长方体木块叠成一个正方体,至少需要这种长方体木块多少块.

9.已知某数与24的最大公约数为4,最小公倍数为168,求此数。

10.已知两个自然数的最大公约数为4,最小公倍数为120,求这两个数。

11.已知两个自然数的和为165,它们的最大公约数为15,求这两个数。

选做题

12.把1,2,3,4,5,6,7,8,9九个数依不同的次序排列,可以得到362880个不同的九位数,求所有这些九位数的最大公约数.

13.两个整数的最小公倍数是1925,这两个整数分别除以他们的最大公约数,得到两个商的和是16,请写出这两个整数(第七届华杯赛试题)。

(必做)第五讲 奇数与偶数及奇偶性的应用

发布日期:[2007-4-22 17:23:11] 共阅[376]次

1.能否在下式中填入适当的“+”,“-”,使等式成立?

9□8□7□6□5□4□3□2□1=28

2.在a、b、c三个数中,有一个是2003,一个是2004,一个是2005。问(a-1)(b-2)(c-3)是奇数还是偶数。

3.用代表整数的字母a、b、c、d写成等式组:

a×b×c×d-a=1983

a×b×c×d-b=1993

a×b×c×d-c=2003

a×b×c×d-d=2013

试说明:符合条件的整数a、b、c、d是否存在。

4.有一串数,最前面的四个数依次是1、9、8、7.从第五个数起,每一个数都是它前面相邻四个数之和的个位数字.问:在这一串数中,会依次出现1、9、8、8这四个数吗?

5.任意改变某一个三位数的各位数字的顺序得到一个新数.试证新数与原数之和不能等于999。

最大公约数和最小公倍数(闫老师班)

发布日期:[2007-10-16 19:01:58] 共阅[154]次

一、填空

1、用96朵红花和72朵白花做成花束,如果每束花里红花的朵数相同,白花的朵数也相同,每束花里最少有 朵花?

2、7月6日,宝珠从避暑山庄打电话向拴柱问好,贾六来看望拴柱,喜子在打扫房间。如果喜子每隔3天打扫一次,宝珠每隔6天打一次电话,贾六每隔5天看望一次,至少经过

天,问好、看望、打扫这三件事才能同时发生。

3、一筐梨,按每份两个梨分多1个,每份3个梨分多2个,每份5个梨分多4个,则筐里至少有 个梨。

二、解答题

1、 为了搞试验,将一块长为75米,宽为60米的长方形土地分为面积相等的小正方形土地,那么小正方形土地的面积最大是多少平方米?

2、 两个数的最大公约数是18,最小公倍数是180,两个数相差54,求这两个数各是多少?

3、有一种新型的电子钟,每到正点和半点都响一次铃,每过9分钟亮一次灯,如果中午12点时,它既响了铃,又亮了灯,那么下一次既响铃又亮灯要到什么时间?

回答者: 知道100℃ - 千总 四级 1-14 18:49

周期问题

1.有249朵花,按5朵红花,9多黄花,13朵绿花的顺序排列着,最后一朵是什么颜色的花?

根据题意可知,者写按5红,9黄,13绿的顺序轮流排列着,即5+9+13=27(朵)花为一个周期,不断循环。因为249除以27等于9余6,也就是经过9个周期还余下6朵花,是黄花。

2.1除以7等于0.142857142857.....小数点后的第一百位是多少?

142857,有6个数在循环,就用100除以6等于16余4,是8。

求小学五年级的奥数题,要比较难的题,并把正确答案出来.

甲、乙、丙三人赛跑,同时从A地出发向B地跑,当甲跑到终点时,乙离B还有30米,丙离B还有70米;当乙跑到终点时,丙离B还有45米。问:A、B相距多少米?

答案:乙跑最后30米时,丙跑了(70-45)=25米,所以乙、丙的速度比是30:25=6:5。因为乙到终点时比丙多跑了45米,所以A、B相距,45÷(1- 5/6)=270米。1、某班有40名学生,其中有15人参加数学小组,18人参加航模小组,有10人两个小组都参加。那么有多少人两个小组都不参加?

2、某班45个学生参加期末考试,成绩公布后,数学得满分的有10人,数学及语文成绩均得满分的有3人,这两科都没有得满分的有29人。那么语文成绩得满分的有多少人?

3、50名同学面向老师站成一行。老师先让大家从左至右按1,2,3,……,49,50依次报数;再让报数是4的倍数的同学向后转,接着又让报数是6的倍数的同学向后转。问:现在面向老师的同学还有多少名?

4、在游艺会上,有100名同学抽到了标签分别为1至100的奖券。按奖券标签号发放奖品的规则如下:(1)标签号为2的倍数,奖2支铅笔;(2)标签号为3的倍数,奖3支铅笔;(3)标签号既是2的倍数,又是3的倍数可重复领奖;(4)其他标签号均奖1支铅笔。那么游艺会为该项活动准备的奖品铅笔共有多少支?

5、有一根长为180厘米的绳子,从一端开始每隔3厘米作一记号,每隔4厘米也作一记号,然后将标有记号的地方剪断。问绳子共被剪成了多少段?

五年级试题三答案

1,因为10人2组都参加,所以只参加数学的5人,只参加航模的8人,加上那10人就是23人,40-23=17,2个小组都不参加的17人

2,同理,数学满分10人,2科都满分的3人,于是只是数学满分的7人,45-7-29=9,这个就是语文满分的人(如果说只是语文满分的则需要减去3)

3,50÷4取整12,50÷6取整8,但是要注意,报4倍数的同时可能是6的倍数,所以还要算出4和6的公倍数,有50÷12(4和6的最小公倍数)=4(取整),所以,应该是50-12-8+4=34

4,100÷2=50,100÷3=33(取整),还是算出2和3的公倍数100÷6=16(取整),然后找出即没不被2整除,也不被3整除的数的个数100-50-33+16=28,所以,准备铅笔为50X2+33X3+28=227

5,180÷3=60,180÷4=45,但是可能2个划线划在一起,也就是要算出他们的公倍数,180÷3÷4=15,所以应该为60+45-15=90

五年级奥数题100道 自己出的 好的追加100 越多越好 急求!!!!!!!!!!!!!

第一次课:

图解法应用题(精讲)

1、 两筐重量相同的梨。甲筐取出7千克,乙筐加入19千克,这时乙筐的重量是甲筐的3倍。两筐原来各有梨多少千克?

2、 一根电线长180米,将它截成三段,第一段比第二段长20米,第三段长为第一段长的2倍,则第二段的长度为多少米?

3、 五、一班的男生人数和女生人数同样多,抽去18名男生和26名女生参加合唱团,剩下的男生人数是女生人数的3倍。五、一班原有男女生各多少人?

4、 哥哥现存的钱是弟弟的5倍,如果哥哥再存20元,弟弟再存100元。两人的存款正好相等,哥哥原来存有多少钱?

5、 有两块同样长的布,第一块用去27米,第二块用去18米,结果所剩的秘书第二块是第一块的4倍,两块布原来各长多少米?

6、 甲乙两人同时从两地骑车相向而行,甲的速度每小时20千米,乙每小时行18千米,两人相遇时距终点4千米,全路程是多少千米?

7、 六一班同学参加学校运动会,参加田赛的有26人,参加径赛的有30人,以上的两项都参加的有12人,这两项都没参加的有4人,全班有学生多少人?

图解法应用题(精练)

1、 有两块同样长的布,第一块用去32米,第二块用去20米,结果所剩的米数第二块是第一块的3倍,两块布原来有多少米?

2、 副食店原有的白糖比红糖多200千克,当卖出红糖50千克时 ,白糖比红糖的千克数正好是红糖所剩千克数的一半,原来有白糖、红糖各多少克?

3、 有一个长方形,如果长增加6厘米,或者宽增加4厘米,面积都比原来增加48平方厘米,求这个长方形原来面积是多少平方厘米?

4、 甲乙两筐水果个数一样多,从第一筐中 取出31个,第二筐中取出19个后,第二筐剩下的个数是第一筐的4倍,原来两筐水果各有多少个?

5、 有两筐水果,甲筐水果的个数是乙筐的3倍,如果从乙筐中拿15个放进甲筐,这是甲筐的水果恰好是乙筐的5倍,原来两筐水果各有多少个水果?

图解法应用题(作业)

1、 第一筐有280个桔子,第二只筐有40只桔子,每次从第一只筐取出8个放入第二只筐,去多少次后两筐桔子相等

2、 一个班有学生42人,参加体育队的有30人,参加文艺队的有25人,并且全班没人至少参加一个队,两个队都参加的有多少人?

3、 甲乙两个学校共有学生1245人,如果从甲校调20人去乙校后,甲校比乙校还多5人,两校原有学生多少人?

4、把200个苹果分成四堆,第一堆比第二堆的2倍多10个,第三堆如去掉15个刚好与第二堆相等,第四堆比第二堆的2倍少5个,四堆苹果各有多少个?

5、A、B、C、D、E五人进行乒乓球单循环赛,比赛进行一段时间之后,对已赛果的场次作一个小统计,A赛4场,B赛3场,C赛2场,D赛1场,这时E赛了几场?到比赛结束还需要几场比赛?

第二次课:

假设法解应用题(精讲)

1、 小红又1角、5角的硬币共35枚,一共是9元5角,问两种硬币各多少枚?(两种假设)

2、 有鸡兔共20只,脚44只,鸡兔 各几只?

3、 班主任张老师带五年级(2)班50名同学栽树,张老师一人载5课,男生每人栽3棵,女生每人栽2棵,总共栽树120棵,问有几名男生,几名女生?

4、 某玻璃杯厂要为商店运送1000个玻璃杯,双方商定每个运费为1元,如果打碎一个,这一个不但不给运费,而且要赔偿4元,结果运到目的地后结算时,玻璃杯厂共得运费895元,求打碎几个玻璃杯?

5、 小张、小李两人进行射击比赛,约定每中一发记20分,脱靶一发扣20分,两人各打了10发,共得208分,其中小张比小李多64分,问小张、小李两人各中几发。

能力提升:

6、 某食堂买来的大米是面粉的3倍,每天吃面粉20千克,大米50千克,几天后面粉全部吃完,大米剩下100千克,那么这个食堂第几天吃完面粉?

假设法解应用题《精练》

1、 小华用二元五角钱买了面值二角和一角的邮票共17张,问两种邮票各买多少张?

2、 有一个饲养小组,养了若干只鸡和兔,已只共有35个头和94只脚,问这个饲养小组鸡和兔各多少只?

3、甲、乙两车间共加工同样零件393个,包装时,把甲车间加工的16个零件并入乙车间的零件中,这时甲车间加工的零件仍比乙车间多5个,甲、乙两车间各加工零件多少个?

3、 某校举行的数学竞赛共15道题,规定每做对一题得10分,每做错一题倒扣4分,小明在这次数学竞赛中共得66分,问他错、对各几道题?

4、 某厂工人,白班补助4元,夜班另加6元,某工人工作24天,共得补助144元,问他上来几天夜班?

假设法应用题(作业)

1、 买来2角邮票和5角邮票共100张,总值41元,求2角邮票、5角邮票各多少张?

2、 解放前,工人为资本家做工,每工作1天,给0.3元;停工1天,除工钱不给外,还得给资本家找回饭费0.14元,某工人在33天中共得工钱7.7元,求做工天数。

3、 小红和小妹一起跳绳,小红先跳了2分钟,然后两人各跳了3分钟,一共跳了780下,已知小红比小妹每分钟多跳12下,问小红比小妹一共多跳多少下?

4、运输队为百货公司运输10000只茶杯,已知100只茶杯的运费为1.5元,如果损坏一只要赔偿成本0.2元,结果运输队共得运费146.56元,问损坏了多少只茶杯?

第三次课:

消去法解应用题《精讲》

1、 小明的妈妈买了3条毛巾6把牙刷花了12.3元,小红的妈妈买了同样的3条毛巾9把牙刷花了14.7元,每条毛巾和每把牙刷各多少元?

2、3袋大米和5袋面粉共重250千克,1袋大米和6袋面粉中170千克,求每袋大米和每袋面粉各重多少千克?

3、一所中学食堂本周运来大米7袋,面粉4袋共重1640千克,上周运来大米3袋,面粉6袋共重1560千克,问每袋大米、每袋面粉各重多少千克?

4、8头牛和3只羊共吃青草136千克,3头牛和8只羊共吃青草106千克,每头牛和每只羊各吃青草多少千克?

5、买4套足球服和5个足球共花1020元,买一套足球服的钱可以买三个足球,问一套足球服、一个足球个多少元?

6、8千克青豆、9千克菠菜共16.8元,9千克青豆、8千克菠菜共17.2元。每千克青豆多少元?每千克菠菜多少元?

6、小娟花了153元买了一身衣服,一个书包和一个文具盒,衣服的价格比书包贵95元,衣服和书包一共比文具盒贵137元,请问衣服、书包和文具盒各多少元?

消去法应用题《精练》

1、小强有5盒奶糖,小刚有4盒水果糖,共值44元,如果小强和小刚对换一盒,则个人手里的糖价值相等,一盒奶糖和一盒水果糖各值多少元?

2、3包科技书和5包故事书共420本,学校买来4包科技书和10包故事书共760本,每包科技书多少本?每包故事书多少本?

3、2台电视机和3台冰箱共8550元,4台电视机和5台冰箱共15450元。1台电视机和1台冰箱的价格各是多少元?

4、80本语文书和100本数学书总价相等,已知每本语文书比每本数学书贵5元,语文书和数学书的单价各是多少元?

5、买15张桌子和25把椅子共用去3050元;买同样的5张桌子和20把椅子,共需要1600元,买一张桌子和一把椅子需要多少元?

消去法解应用题(作业):

1、3头牛和6只羊一天共吃草93千克,6头牛和5只羊一天共吃草130千克,每头牛每天比每只羊多吃草多少千克?

2、3件上衣和7条裤子共430元,同样的7件上衣和3条裤子共470元。每件上衣和每条裤子各多少元?

3、买9张桌子和3把椅子共780元,5张桌子的价钱比3把椅子的价钱多了340元,每张桌子多少元?每把椅子多少元?

4、有甲、乙、丙三种货物,若购甲3件、乙7件、丙1件共需3.15元;若购甲4件,乙10件,丙1件共需4.20元,先购甲、乙、丙各一件共需款若干?

5、大、中、小三种船。2只小船、3只中船、1只大船共坐23人,3只小船、4只中船、2只大船共坐35人,1只小船、2只中船、3只大船共坐26人,求每种船坐多少人?

第四次课:

逆推法解应用题(精讲)

1、一种细菌 ,1小时增长1倍,现在有一批这样的细菌,10小时可增长到400万个,问增长到100万个需要多少小时?

2、小聪问小明:“你几年几岁?”小明回答说:“用我的年龄数减去8,乘7,加上6,除以5,正好等于4,请你算算,我今年几岁?”

3、四个小朋友共有课外读物120本,甲给了乙3本,乙给了丙4本,丙给了丁5本,丁给了甲6本,这时他们四个人课外读物的本数相等,他们原来各有课外读物多少本?

本文转载自互联网,如有侵权,联系删除

本文链接地址:http://go-okai.com/a/15833.html

最后编辑于:2022/12/31作者:东方说体育

东方说体育

相关文章

  • 暂无相关推荐