什么叫数学驳论?
是“数学悖论”吧?
悖论是一种认识矛盾,它既包括逻辑矛盾、语义矛盾,也包括思想方法上的矛盾。
数学悖论作为悖论的一种,主要发生在数学研究中。按照悖论的广义定义,所谓数学悖论,是指数学领域中既有数学规范中发生的无法解决的认识矛盾,这种认识矛盾可以在新的数学规范中得到解决。
比如:
在某个城市中有一位理发师,他的广告词是这样写的:“本人的理发技艺十分高超,誉满全城。我将为本城所有不给自己刮脸的人刮脸,我也只给这些人刮脸。我对各位表示热诚欢迎!”来找他刮脸的人络绎不绝,自然都是那些不给自己刮脸的人。可是,有一天,这位理发师从镜子里看见自己的胡子长了,他本能地抓起了剃刀,你们看他能不能给他自己刮脸呢?如果他不给自己刮脸,他就属于“不给自己刮脸的人”,他就要给自己刮脸,而如果他给自己刮脸呢?他又属于“给自己刮脸的人”,他就不该给自己刮脸。
理发师悖论与罗素悖论是等价的:
因为,如果把每个人看成一个集合,这个集合的元素被定义成这个人刮脸的对象。那么,理发师宣称,他的元素,都是村里不属于自身的那些集合,并且村里所有不属于自身的集合都属于他。那么他是否属于他自己?这样就由理发师悖论得到了罗素悖论。反过来的变换也是成立的。
数学悖论有哪些,数学史上的三大悖论
1.数学中有许多著名的悖论,有伽利略悖论、贝克莱悖论、康托尔最大基数悖论、布拉里福蒂最大序数悖论、理查德悖论、集合论悖论、希帕索斯悖论等。
2. 理查德悖论:是法国第戎中学教师理查德在1905年发表了一个悖论,被用来显示仔细区分数学和元数学的重要性。
3.贝克莱悖论:数学史上把贝克莱的问题称之为“贝克莱悖论”,可以表述为“无穷小量究竟是否为0”的问题。
4.集合论悖论:1902年,英国数学家罗素提出的悖论。
[img]
数学悖论讲的是什么呢?
常识和科学告诉数学悖论我们数学悖论:假如说一个论断是正确数学悖论的,那么,无论作怎样的分析、推理,总不会得出错误的结论;反过来,也是一样。于是,早在两千多年前的古希腊,人们就发现了这样的矛盾:用公认的正确推理方法,证明了这样两个“定理”,承认其中任何一个正确,都将推证出另一个是错误的。甚至有这样的命题:如果承认它正确,就可以推出它是错误的;如果承认它不正确,又可以推出它是正确的。
这种事看来十分荒唐,而事实上它是客观存在的。这种现象科学家称之为“悖论”。今天,虽然数学家还不能合理地解释悖论,但正是在这种解释的努力中,数学家一系列的发现,导致了大量新学科的建立,推动了数学科学的发展。悖论还反映了严密数学科学并不是铁板一块,它的概念、原理之中也存在许多矛盾。数学就是在解决矛盾中逐渐发展完善起来的。悖论的存在,还告诉人们,在学习与研究数学时,必须牢记古希腊数学家的名言:要怀疑一切,只有这样才能有所发现。
数学悖论有哪些
①二分法悖论(即无限可分数学悖论,你可以把它想象成0.999……=1的情形)
②飞矢不动(话说数学悖论我一直觉得这是物理的悖论)
③忒修斯之船(这个应该比较有名吧数学悖论,就不多做解释了,话说数学悖论我一直觉得这是哲学悖论)
④托里拆利小号(体积有限的物体,表面积却可以无限。)
⑤有趣数悖论(1是非零的自然数,2是最小的质数,3是第一个奇质数,4是最小的合数等等;如果你找不到这个数字有趣的特征,那它就是第一个不有趣的数字,这也很有趣。)
⑥球与花瓶(假设无限个球和一个花瓶,现在要进行一系列操作,且每次操作都一样:往花瓶里放10个球,然后取出1个球。那么,无穷多次这样的操作之后,花瓶里有多少个球呢数学悖论?)
⑦土豆悖论(100克土豆含有99%的水,如果它被榨出了2%,还剩98%的水分,它将只重50克。即100克的土豆含有1克干物质(dry material),当还剩98%的水分时,1克将对应2%的含量,因此含98%水分的土豆重50克。)
⑧饮酒悖论(酒吧里会发生这种情况:如果有人在喝酒,那么每个人都在喝酒。乍看起来是一个人喝酒导致了所有人喝酒。实际上,如果酒吧里至少有一个人没在喝酒,那么按照数学中的实质条件(material conditional),对那些没喝酒的人来说,有些人在喝酒,这些人中的每个人都在喝酒,情况依然成立。)
⑨理发师悖论(这其实就是罗素悖论)
⑩祖父悖论(如果你乘坐哆啦A梦的时光机,回到你爷爷奶奶相遇之前,杀死你的爷爷会发生什么?如果杀死了你的爷爷,那么你就从未诞生;如果你从未诞生,如何回到以前杀死你的爷爷?)
关于数学悖论和数学史上十个有趣的悖论的介绍到此就结束了,不知道你从中找到你需要的信息了吗 ?如果你还想了解更多这方面的信息,记得收藏关注本站。
本文转载自互联网,如有侵权,联系删除